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Fuel injection and turbulent mixing at supercritical pressures determines ignition and
combustion in numerous engineering applications. Flow evolution under such conditions
is characterized by strong non-linear coupling between dynamics, transport coefficients, and
thermodynamics. Experimental studies observe that the jets injected at supercritical pressures
exhibit significantly different dynamics from the jets at subcritical conditions, owing to the lack
of distinct liquid and gas phases in supercritical state. Thus, the averaged flow quantities such
as the potential core length, jet spatial growth rate and velocity decay profiles differ in the two
conditions, resulting in different mixed-fluid distributions. In this study, turbulent jet direct
numerical simulations (DNS) are performed to examine the variations in flow statistics between
injection of Nitrogen (N2) in Nitrogen (N2) at both subcritical (perfect-gas) and supercritical
conditions. In all cases, isothermal round jets at Reynolds number (ReD), based on jet diameter
(D) and jet orifice velocity (U0), of 5000 are considered. For mixing analyses, a passive scalar
transported with the flow is examined.

I. Introduction
Combustion in numerous propulsion systems, e.g., diesel, gas turbine, and liquid-rocket engines, occurs at pressures

and temperatures that exceed the critical values of injected fuel and oxidizer. Pure species properties under supercritical
conditions are significantly different from the properties at atmospheric conditions, a fact which influences flow
dynamics, species mixing, and, as a result, power generation, soot formation, and thermal efficiency of the engines.
Surface tension vanishes beyond the thermodynamic critical point, resulting in diffusion-driven mixing owing to no
clear distinction between liquid and gas phases. Moreover, near the critical point several fluid properties, e.g., density,
constant-pressure specific heat, thermal conductivity and mass diffusivity, are highly sensitive to changes in pressure or
temperature.

Detailed turbulence statistics at these high-pressure engine-relevant conditions, which may allow mixing or species
concentration and its fluctuation estimates, are difficult to measure in experiments and, as of now, remain unavailable.
Table 2 lists several experimental studies of supercritical round jets and the flow conditions considered in those
experiments. All studies provide a qualitative assessment of the flow field, highlighting the challenge of obtaining
high-fidelity measurements under these conditions. Additionally, the quantities to be measured and the location where
they should be measured in order to capture the difference between atmospheric-pressure and high-pressure flows, are
uncertain.

Numerical simulations can offer detailed flow and mixing statistics at high-pressure conditions. However, accurate
simulations require careful choice of equation of state, mass and thermal diffusion models, and, at high-Reynolds-
numbers, subgrid-scale models. To minimize model errors, direct numerical simulations of round-jet flows at Reynolds
number, ReD , based on jet diameter and exit velocity, of 5000 are performed in this study to model fuel injection.
Equation of state and diffusion models described in Masi et al. [1] are employed for high-pressure simulations.

The effect of dynamics-based compressibility on shear layers, and turbulence in general, with respect to various
(convective, turbulence, gradient, deformation) Mach numbers have been investigated at perfect-gas conditions in
several previous studies[2–5]. An increase in dynamics-based compressibility results in reduction of turbulence
levels and reduced momentum-thickness growth rate in shear layers. The reduction in turbulent kinetic energy is
attributed to decrease in turbulent production resulting from reduced pressure fluctuations in the pressure-strain term[6].
Compressibility, as a result, also influences Reynolds stress components and associated anisotropy. Real-gas effects at
high pressure introduce another type of compressibility, thermodynamics-based compressibility characterized by the
compressibility factor, Z .
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Reference Species
(injected + chamber)

U0 (m/s) Tr,ch Tr,inj Pr,ch Pr,inj ReD ×103(
ρinjU0D/µ

)
Newman & Brzustowski (1971) [7] LCO2 + CO2/N2 2.0 - 4.0 0.97 - 1.09 0.97 0.86 - 1.23 NA ∼ 20 - 30
Woodward & Talley (1996) [8] LN2 + N2/He ∼ 1.8 - 2.2 2.21 - 2.46 0.70 - 0.91 0.83 - 2.03 NA 3.4 - 4.1

Mayer et al. (1998) [9]
LN2 + N2

1 2.38 0.83 0.59 - 1.18 NA ∼ 18 - 19
1.3 1.98 0.71 0.83 - 2.03 NA ∼ 21 - 23

LN2 + He 1.7 2.31 0.66 1.62 - 2.44 NA ∼ 23 - 24
Oschwald & Schik (1999) [10] LN2 + N2 5.0 - 20.0 2.36 0.79 - 1.11 1.17 - 1.76 NA 115 - 340
Chehroudi et al. (2002) [11] LN2 + N2 10.0 - 15.0 2.38 0.71 - 0.87 0.23 - 2.74 NA 25 - 75
Mayer et al. (2003) [12] LN2 + N2 1.8 - 5.4 2.36 1.0 - 1.11 3.95 - 5.98 NA ∼ 47 - 157

Segal & Polikhov (2008) [13] Fluoroketone + N2 7.0 - 25.0 0.66 - 1.07 0.68 - 1.28 0.05 - 1.86 0.2 - 2.2 11 - 42
Roy et al. (2013) [14] Fluoroketone + N2 7.07 - 30.0 0.69 - 1.09 1.0 - 1.31 1.26 - 1.88 1.34 - 1.98 NA

Falgout et al. (2015) [15] Dodecane + Air NA 0.7 & 1.4 0.55 1.6 & 3.2 82.55 NA
Muthukumaran & Vaidyanathan Fluoroketone + N2 0.86 - 7.5 0.82 - 1.03 0.99 - 1.07 0.81 - 1.34 NA NA

(2016) [16, 17] Fluoroketone + He 0.82 - 19.0 0.82 - 1.05 0.98 - 1.07 0.72 - 1.34 NA NA

Baab et al. (2016, 2018) [18, 19]
n-hexane + N2 ~ 91 0.58 1.24 1.65 1.81 120
n-pentane + N2 76 & 96 0.63 1.28 & 1.13 1.48 1.62 & 1.61 121 - 139

Fluoroketone + N2 41 & 72 0.67 1.13 1.34 & 2.11 2.11 172 - 272
Table 2 High-pressure round jet experimental studies. U0 = jet-exit axial velocity, Tr,ch = chamber reduced temperature, Tr,inj = injectant reduced
temperature, Pr,ch = chamber reduced pressure, Pr,inj = injectant reduced pressure, ρinj = injectant fluid density, NA = not available. ∼ denotes values not
provided in the reference but deduced from other parameters. Numbers in blue denote reduced chamber conditions based on injectant critical temperature
and pressure.
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Case (description) Nx × Ny × Nz
p∞ Tch

(
= Tinj

)
Z F

Inflow
(bar) (K) perturbation

1 (atm-p)
240 × 216 × 216

1 293 1.0 6.5 0.004U0 (lam)320 × 288 × 288
400 × 320 × 320

2 (high-p (50); Z ≈ 1)

240 × 216 × 216

50 293 0.99 309.4 0.004U0 (lam)
320 × 288 × 288
400 × 320 × 320
480 × 360 × 360

3 (high-p (50); Z ≈ 0.9)
400 × 320 × 320

50 199 0.9 641.4 0.004U0 (lam)
480 × 360 × 360

4 (high-p (50); Z ≈ 0.8)
400 × 320 × 320

50 170 0.8 895.7 0.004U0 (lam)480 × 360 × 360
560 × 408 × 408

5 (high-p (70); Z ≈ 0.9)
400 × 320 × 320

70 211 0.9 774.1 0.004U0 (lam)
480 × 360 × 360

1T (atm-p) 400 × 320 × 320 1 293 1.0 6.5 pipe-flow turb
2T (high-p (50); Z ≈ 1) 400 × 320 × 320 50 293 0.99 309.4 pipe-flow turb

Table 3 Summary of the parameters for numerical simulations.

Turbulence statistics from jet-flow computations are sensitive to the choices of inflow/boundary conditions, domain
size, and numerical discretization. In particular, the near-field flow development that determines the flame characteristics
depends largely on inflow conditions. Experimental jet-flow studies typically use a smoothly contracting nozzle or a long
straight pipe to initialize jet flows[20]. The contracting nozzle produces a laminar inflow with ‘top-hat’ velocity profile,
whereas the long straight pipe produces a fully-developed turbulent inflow. The nature of perturbations characterized by
its energy spectrum differ significantly in the two cases, a fact which has implications on both near- and far-field flow
statistics.

II. Simulation setup and numerical details
Several flow cases, as outlined in Table 3, are considered to examine influences of high-pressure thermodynamics

and inflow conditions on round-jet flows. Flow statistics at increasingly finer grid resolutions, denoted by Nx × Ny × Nz ,
in each case are compared to ensure grid convergence. In a first step, which is the present focus, single-species N2
jets, which do not involve inter-species diffusion effects, at a Reynolds number of 5000 are simulated. In all cases, the
injected and chamber fluid temperatures and pressures are the same, therefore, the jet injects into a chamber that is as
dense as the injected fluid. Cases 2 to 4, as evident from Figure 1, investigate the effect of Z on fully-developed jet-flow
turbulence as well as on the annular shear layer that forms in the early regions of jet-flow development. Case 5 examines
the effects of pressure change, keeping compressibility factor Z constant, by comparisons against Case 3.

The role of initial/inflow conditions on free-shear flow development as well as the asymptotic (self-similar) state
attained by the flow at atmospheric conditions is well recognized [21–23]. Cases 1T and 2T examine the influence
of inflow perturbations on near- and far-field statistics at atmospheric and high-pressure conditions, respectively, by
comparisons against Cases 1 and 2, respectively. The significance of factor F is explained in section II.A. Figure 1
shows Z , indicating deviation from perfect-gas behavior, of pure Nitrogen for a temperature range at 50 and 70 bar.
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Fig. 1 Compressibility factor of N2 at 50 and 70 bar pressure. Blue and red markers denote the chamber
conditions for various cases of Table 3.

A. Governing equations
The compressible flow equations for conservation of mass, momentum, energy, and a passive scalar, solved in this

study, are given by
∂ρ

∂t
+

∂

∂xj

[
ρu j

]
= 0, (1)

∂

∂t
(ρui) +

∂

∂xj

[
ρuiu j + pδi j − σi j

]
= 0, (2)

∂

∂t
(ρet ) +

∂

∂xj

[
(ρet + p) u j − uiσi j + qj

]
= 0, (3)

∂

∂t
(ρξ) +

∂

∂xj

[
ρξ u j + Jj

]
= 0, (4)

where t denotes the time, (x1, x2, x3) ≡ (x, y, z) are the Cartesian directions, subscripts i and j refer to the spatial
coordinates, ui is the velocity, p is the pressure, δi j is the Kronecker delta, et = e + uiui/2 is the total energy (i.e.,
internal energy, e, plus kinetic energy), ξ ∈ [0, 1] is a passive scalar transported with the flow, σi j is the Newtonian
viscous stress tensor

σi j = µ

(
2Si j −

2
3

Skkδi j

)
, Si j =

1
2

(
∂ui
∂xj

+
∂u j

∂xi

)
, (5)

where µ is the viscosity, Si j is the strain-rate tensor, and qj = −λ ∂T/∂xj and Jj = −D ∂ξ/∂xj are the heat flux and
scalar diffusion flux in j-direction, respectively. λ is the thermal conductivity and D = µ/Sc is the scalar diffusivity,
where Sc denotes the Schmidt number. The injected fluid is assigned a scalar value, ξ, of 1, whereas the chamber fluid a
value of 0. The passive scalar is not a physical species, and it is only used as a surrogate quantity to study mixing in this
simple single-species flow; thus, the choice of the Sc value is arbitrary.

For the near-atmospheric-p simulation (Cases 1 and 1T), the perfect gas equation of state is applicable, given by

p =
ρRuT

m
,

where Ru is the universal gas constant and m is the species molar mass. The viscosity is modeled as a power law

µ = µR

(
T
TR

)n
with n = 2/3 and the reference viscosity µR = ρ0U0D/ReD , where ρ0 and U0 are the jet-exit fluid density and velocity,
respectively, and the reference temperature TR = 293 K. The thermal conductivity λ = µCp/Pr, where Prandtl number
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Pr = 0.7 (as typical 1 bar flows), the ratio of specific heats γ = 1.4, and the isobaric heat capacity Cp = γRu/(γ − 1) is
assumed.

For the high-p simulations (Cases 2 to 5 and 2T), the governing equations (1)-(4) are closed using the Peng-Robinson
(PR) equation of state (EOS)

p =
RuT

(vPR − bmix)
−

amix(
v2

PR + 2bmixvPR − b2
mix

) ,
where the pressure, p, and temperature, T , are obtained as an iterative solution from the density, ρ, and internal energy,
e, obtained from the conservation equations [24]. The molar PR volume vPR = v − vs, where the molar volume v = m/ρ.
vs denotes the volume shift introduced to improve the accuracy of the PR EOS at high pressures [24, 25]. amix and bmix
are obtained from the expressions detailed in past publications [26, Appendix B].

The physical viscosity, µph, and thermal conductivity, λph, are calculated using the Lucas method [27, Chapter 9]
and the Stiel-Thodos method [27, Chapter 10], respectively. The computational viscosity, µ, and thermal conductivity, λ,
are then obtained by scaling µph and λph with factor F = µR/µph,0, i.e., µ = F µph and λ = F λph, to simulate the flow at
a specified Reynolds number ReD; this choice ensures that the physical value of Pr is respected. The inflow physical
viscosity, µph,0, is obtained from the Lucas method using the pressure p∞ and the average temperature

(
Tinj + Tch

)
/2,

where the subscripts “inj” and “ch” denote the injection and chamber conditions, respectively.
To examine the robustness of the above EOS and transport coefficient models at supercritical conditions, Figure

2 compares the density, isobaric heat capacity, and the transport coefficients µph and λph obtained from the models
against the National Institute of Standards and Technology (NIST) database [28] for N2 at pressures of 50 and 70
bar and temperatures ranging from 100 K to 400 K. The supercritical temperature (Tc) of Nitrogen is 126.2 K. The
transport coefficient models are accurate at supercritical temperatures only and, thus, their comparison spans values
of T > Tc . As evident, the models have good agreement with the NIST database, showing their validity at high-p
conditions encountered during simulations of Cases 2 to 5.

B. Numerical methods and computational domain
The spatial derivatives are approximated using the sixth-order compact finite-difference scheme and time integration

uses the explicit classical fourth-order Runge-Kutta method. The outflow boundary in axial direction and all lateral
boundaries have sponge zones[29] with non-reflecting outflow Navier-Stokes characteristic boundary conditions
(NSCBC)[30] at the boundary faces. Sponge zones at each outflow boundary have a width of 10% of the domain length
normal to the boundary face. The sponge strength at each boundary decreases quadratically with distance normal to the
boundary. The performance of one-dimensional NSCBC[30] as well as its three-dimensional extension[31] by inclusion
of transverse terms were also evaluated without the sponge zones; they permit occasional spurious reflections into the
domain, therefore, the use of sponge zones was deemed necessary. To avoid unphysical accumulation of energy at the
highest wavenumber, resulting from the non-dissipative spatial discretization, the conservative variables are filtered
every five time steps using an eighth-order filter.

The computational domain extends to 42D0 in the axial (x-)direction and 20D0 in the y- and z-direction including
the sponge zones, as shown in Figure 3.

C. Inflow condition
Cases 1 to 5 use a top-hat jet-exit mean velocity profile with random perturbations of small magnitude, as listed in

Table 3, that models laminar inflow conditions, observed in jets exiting a smooth contracting nozzle [20]. The velocity
profile at the inflow plane is given by [32]

u(r) =
U0
2

(
1 − tanh

[
r − r0
2θ0

] )
,

where r =
√
y2 + z2, the jet exit radius r0 = D/2 and the momentum thickness θ0 = 0.04r0 is assumed. By choice,

random perturbations with maximum amplitudes of 0.004U0 are superimposed on the inflow velocity profile to trigger
jet flow transition to turbulence. No perturbations are added to fields other than velocity.

To model turbulent inflow conditions, typical of jets exiting a long pipe, the approach of Klein et al. [33], modified
to accommodate circular-pipe inflow geometry, is used for cases 1T and 2T. The approach generates inflow statistics
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Fig. 2 EOS and transport coefficients model comparison against NIST database for pure Nitrogen at 50 bar
pressure. (a) Density, (b) Isobaric heat capacity, (c) Viscosity, and (d) Thermal conductivity.
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Fig. 3 A 2D schematic showing the extent of computational domain in axial and radial direction, and the
boundary conditions applied at various boundaries.

matching a prescribed mean velocity and Reynolds stress tensor, using the method of Lund et al. [34], with fine-scale
perturbations possessing a prescribed spatial correlation length scale. The mean velocity and Reynolds stress profiles
are specified from the fully-developed pipe flow DNS results of Eggels et al. [35], where the Reynolds number, based
on pipe diameter and bulk velocity, of 5300 is close to the jet Reynolds number of present study. The bulk velocity is
defined as

Ub =
1

π (D/2)2

D/2∫
0

2πru dr .

The choice of correlation length scale determines the energy distribution among various scales. Increasing the length
scale leads to more dominant large-scale structures. Since the turbulent inflow simulations are aimed at examining
influences of fully-developed fine-scale inflow turbulence on jet statistics, a small isotropic value of L/D = 0.1 is
assumed as the correlation length scale.

Figures 4 and 5 show a validation of the inflow implementation. Figure 4 compares the mean velocity from present
inflow with the pipe flow DNS results (case DNS(E)) of Eggels et al. [35]. Figure 5 shows a similar comparison
of the components of Reynolds stress tensor. 〈•〉 denotes an average over time and azimuthal (θ) coordinate. The
method described in Klein et al. [33] assumes a Cartesian grid with uniform spacing, where the periodic directions,
along which averages are computed to determine mean quantities, are aligned with Cartesian directions. The inflow
in a round jet, considered here, has circular orifice, where the azimuthal direction is periodic, which is not aligned
with a Cartesian direction. Therefore, to compute statistics for comparisons, the azimuthal averages are computed by
interpolation of time-averaged Cartesian-grid solution to a polar grid. Moreover, the filter coefficients used to generate
spatially-correlated perturbations are appropriately modified to account for grid stretching in order to preserve the
chosen correlation length scale.

D. Grid convergence
An estimate of the Kolmogorov length scale, ηK , can be made using the empirical relations of centerline velocity

and jet’s half-width, as described in [36], for incompressible flows. This length scale is then, commonly, used to
obtain an estimate of the grid spacing required to perform a DNS. However, the relations for incompressible (or weakly
compressible) flows may not apply in high-pressure flow regimes of interest here. Therefore, mean flow statistics are
compared in this section by successively refining the grid for Cases 1 to 5 of Table 3 to ensure that sufficient grid points
are used for the DNS.

Figures 6(a) to (e) compare the time-averaged centerline velocity, Uc , and scalar concentration, ξc , normalized by
the jet exit values U0 and ξ0 as a function of axial distance from simulations of Cases 1 to 5 with various grid resolutions.
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Fig. 4 Inflow mean velocity normalized by the centerline velocity for the (pseudo-)turbulent inflow compared
against the pipe flow DNS results of [35].

Statistics for Case 1 at atmospheric conditions converges at a resolution of 320 × 288 × 288, whereas, for high-pressure
cases, they converge around 400 × 320 × 320, except Case 4 at Z = 0.8 having maximum deviation from perfect gas
among all cases considered that shows convergence around 480 × 360 × 360. The plots also show that in all cases the
scalar concentration begins to decay upstream of the velocity and at a faster rate than the velocity, consistent with the
observation of Lubbers et al. [37, see Figure 6] for a passive scalar diffusing at unity Schmidt number.

III. Validation of atm-p simulation
Quantitative experimental data for supercritical jets is rare, however, numerous measurements of high-order statistics

have been made for jets at atmospheric conditions. For comparisons, we consider here the measurements made in
the self-similar region of the jet experiments by Wygnanski & Fiedler [38] and Panchapakesan & Lumley [39]. The
Reynolds number of the Panchapakesan & Lumley experiments are closer to the ReD of jets simulated in this study
than the Wygnanski & Fiedler experiments. However, since the comparisons are made in the self-similar region and of
quantities normalized by values specific to individual jets, data from both experiments can be used.

Figure 7 compares the decay of time-averaged centerline velocity normalized by the jet-exit velocity for Case 1
against decay slopes observed in the experiments. For a self-similar round jet with top-hat exit velocity profile, the
centerline velocity Uc (x) is given by the empirical relation[40]

Uc (x)
U0

=
B

(x − x0) /D
, (6)

where B is a constant and x0 denotes the virtual origin. As evident from Figure 7(b), downstream of the potential core
collapse, the time-averaged centerline velocity decays as inverse of the axial distance, where the rate of decay, given by
B, is within the experimentally observed values of 5.7 and 6.06 by Wygnanski & Fiedler and Panchapakesan & Lumley,
respectively.

Figure 9(a) shows the mean axial velocity normalized by the centerline velocity at various axial distances (shown in
figure 8) as a function of similarity coordinates, compared against the self-similar profile from experiments. Mean
quantities are obtained from a time average followed by an azimuthal average, given by a discrete approximation of

ū =
1

2π

2π∫
0

©«
1(

t∗2 − t∗1
) t∗2∫
t∗1

u(x, r, θ, t)dt
ª®®¬ dθ. (7)

The azimuthal averages are computed by interpolation of time-averaged Cartesian-grid solution to a polar grid at a given
axial location. The radius of the polar grid at an axial location, x, is chosen as 0.4(x − x0) to allow concentration of
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Fig. 5 Components of Reynolds stress tensor normalized by the wall friction velocity, uτ , for the (pseudo-
)turbulent inflow compared against the pipe flow DNS results of [35].
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Fig. 6 Time-averaged centerline velocity (Uc) and scalar (ξc) values normalized by the jet exit values U0 and ξ0
as a function of axial distance for various grid resolutions. (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, and (e)
Case 5.
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Fig. 7 (a) Time-averaged centerline velocity (Uc) normalized by the jet-exit velocity U0 as a function of axial
distance and (b) inverse of the normalized time-averaged centerline velocity showing linear decay asymptotically
with axial distance, compared against the decay slopes observed in [38, 39].

polar grid points inside the jet, where x0 = 4D is assumed. The polar grid has 60 grid points each in the azimuthal and
the radial direction. The time average is performed over all time steps in the interval t∗1 = 1000 ≤ tU0/D ≤ 5000 = t∗2 .

Figure 9(b) shows the normalized axial velocity r.m.s. fluctuations compared against the self-similar profile from
experiments. The axial velocity r.m.s. fluctuation is calculated from

u
′

rms =
〈√〈
(u − 〈u〉t )

2〉
t

〉
θ

=
〈√〈

u2
〉
t
− 〈u〉2t

〉
θ

, (8)

where 〈·〉t denotes time averaging and, similarly, 〈·〉θ denotes azimuthal averaging. Using this notation, (7) can be
written as ū = 〈〈u〉t〉θ . At the centerline, there is no azimuthal averaging, therefore, using ū = 〈u〉t = Uc , equation (8)
becomes

u
′

c,rms =
√〈
(u −Uc)

2〉
t

=
√〈

u2
〉
t
−U2

c . (9)

Both the mean and the r.m.s. axial velocity fluctuations agree well with the respective self-similar profiles from
experiments. The mean axial velocity achieves self-similarity by x/D ≈ 15, whereas the r.m.s. fluctuations do not attain
self-similarity until after x/D ≈ 20.

IV. Effects of inflow condition
Statistics between cases using the laminar top-hat inflow velocity profile (Cases 1 and 2) and those using the

(pseudo-)turbulent fluctuations that match various statistics of a pipe-flow turbulence (Cases 1T and 2T), as described in
section II.C, are discussed here. The jet flow from laminar inflow conditions, typical of jets exiting a smooth contracting
nozzle, are characterized by large-scale coherent structures that extend to the far field. In contrast, coherent structures
are only intermittently observed in the far field of a jet from turbulent pipe inflow [20].

Figure 10 compares the normalized time-averaged centerline velocity between the various cases. The potential core
length differs between the cases of laminar and (pseudo-)turbulent inflow. However, the asymptotic velocity decay rate
for all cases are similar. For laminar inflow, a comparison between the atmospheric- (Case 1) and high-pressure (Case 2)
results shows that the velocity decay in the transition region is lower in the latter case.

Figure 11 shows the normalized r.m.s. velocity and scalar fluctuations along the centerline from the two inflows,
calculated using equation (9). In addition to differences in potential core length that can, perhaps, be modulated by inflow
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Fig. 8 Time-averaged axial velocity contours for Case 1. The dashed lines show axial locations where statistics
are azimuthally averaged for figure 7.

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) (b)

Fig. 9 (a) Mean axial velocity, ū, and (b) r.m.s axial velocity fluctuations, u
′

rms, normalized by the centerline
velocity at various axial distances plotted as a function of similarity coordinates.
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Fig. 10 Comparison between cases of laminar and (pseudo-)turbulent inflow. (a) Time-averaged centerline
velocity (Uc) normalized by the jet-exit velocity, U0, as a function of axial distance and (b) inverse of the
normalized time-averaged centerline velocity.

perturbation magnitude in laminar inflow, there are significant differences between the statistics from the two inflows.
The strong hump downstream of the potential core collapse, indicating significantly higher fluctuations, occurs in cases
of laminar inflow but not in cases of (pseudo-)turbulent inflow. This is consistent with the experimental observations of
Mi et al. [20, see Figure 17]. A comparison between figures 11(a) and (b) suggests that the velocity fluctuations are
more sensitive to pressure differences than the scalar fluctuations, especially in the transition region downstream of
potential core collapse. Moreover, the differences are higher for laminar inflow cases, which have large-scale organized
structures. The sensitivity of velocity fluctuation is expected from the presence of pressure term in the momentum
equation. The scalar fluctuations, normalized by the centerline value, asymptote to a value of around 0.2 for all cases
within the axial distance of 30D, however, the normalized velocity fluctuations continue to show significant variations.

Figure 12 compares the axial velocity profiles as a function of similarity coordinate at various axial locations, marked
in figure 8. For a given simulation, the profiles at various axial locations match quite well, a fact which suggests that the
self-similar state has been attained in each case. However, the self-similar states differ from each other since, in both
figures 12(a) and (b), the profiles from laminar inflow (solid lines) do not match with the profiles from (pseudo-)turbulent
inflow (dashed lines). This suggests that the asymptotic state attained by the jet flow depends on the inflow condition,
consistent with the theoretical [41] and experimental [20] results at atmospheric pressure; for supercritical pressure, this
finding constitutes a new result.

V. Effects of compressibility factor
Comparison of the statistics from Cases 1 to 5 examines the influence of Z for laminar inflow. Figure 13 shows

the time-averaged centerline velocity normalized by the jet-exit velocity as a function of axial distance. As observed
in the previous section, the transition region is more sensitive to pressure changes. Therefore, though the potential
core collapse in each case occurs approximately at the same axial distance, the decay rates in the transition region vary
significantly. It will be interesting to see if this sensitivity is specific to laminar inflows, and whether it also occurs for
turbulent inflows, a subject which will be addressed in future investigation.

Figure 14 compares the normalized r.m.s. velocity and scalar fluctuations along the centerline for various laminar
inflow cases. As noted in the previous section, the velocity fluctuations show higher sensitivity to pressure changes than
the scalar fluctuations, indicating that the former would be crucial information to acquire experimentally.
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Fig. 11 Comparison between cases of laminar and (pseudo-)turbulent inflow. (a) Centerline r.m.s. axial
velocity fluctuation and (b) centerline r.m.s. scalar fluctuation, normalized by the respective centerline values.
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Fig. 12 Normalized mean axial velocity plotted as a function of similarity coordinates. Comparison between
(a) Case 1 and 1T and (b) Case 2 and 2T.
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Fig. 13 Comparison between Cases 1 to 5. (a) Time-averaged centerline velocity (Uc) normalized by the jet-exit
velocity U0 as a function of axial distance and (b) inverse of the normalized time-averaged centerline velocity.

VI. Conclusions
Turbulent jet simulations at various chamber and inflow conditions are performed as part of an effort to understand

fuel injection and mixing at high pressures. Both perfect gas (subcritical) and real gas (supercritical) conditions are
considered to understand the differences in dynamics caused by the specified chamber pressure. The equation of state
and transport coefficient models are accordingly chosen for the two conditions. For supercritical pressures, the transport
property models are validated against the NIST database. To assess the influence of inflow conditions, a laminar
inflow with top-hat velocity profile (and small random perturbations) and a (pseudo-)turbulent inflow with statistics
matching pipe-flow turbulence data is considered. The state of the inflow condition influences flow statistics both in
the near-field, containing potential core collapse and transition region, and the far-field, containing fully-developed
flow with self-similar statistics, at both atmospheric as well as high pressures. The sensitivity to inflow and pressure
conditions is higher in the transition region, where pressure changes significantly influence velocity fluctuations in the
laminar-inflow jet, which has dominant large-scale coherent structures.
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